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Dielectric breakdown model at small : Pole dynamics
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We consider the dielectric breakdown model in the limit-0". This is shown to lead to Sivashinsky’s
equation. We show that a particular configuration of poles is linearly stable, in analogy to the stability of the
1/2 finger for diffusion limited aggregation, and compute exactly the eigenvalues of the stability matrix.
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The problem of Laplacian growth in two dimensions has We consider growth in a strip geometry throughout. Here,
been much studied since the introduction of the model othe growth is confined to a strip, which is periodic in the
diffusion limited aggregation(DLA) [1]. The model is horizontal direction, with the growth happening vertically.
known to give rise to complex, branching structures, with aWe will use complex variables to describe the coordinates in
nontrivial fractal dimension. A generalization of DLA is the the two-dimensional strip in which growth occurs. The real
dielectric breakdown modgDBM) [3], which includes an part of the complex variable will represent the horizontal
additional free parametey, and has a continuously varying position, while the imaginary part represents the vertical po-
fractal dimension. Recently, a renormalzation group apsition. Growth will occur in the positive imaginary direction.
proach has been developed based on expanding appedt  For the strip boundary conditions, we will use a coordinate
where it is argued that the clusters become asymptoticallperiodic with period 2r, to parametrize the cluster. The ini-
one dimensiond2]. tial, seed cluster is taken to be a flat surface, and random

An alternative possibility, which will be explored in this walkers are released from infinity, above the strip. In the strip
paper, is to expand neay=0. For smally, the cluster be- geometry, one finds fractal DBM clusters when the ratio of
comes less branched, with a dimensionality approaching 2 ithe width of the strip to the walker size diverges.
the limit »—0, where the dynamics reduces to an Eden We will parametrize the boundary of the cluster by using
model[4]. The idea behind the present work is to examinea functionF(x), such that=(x) yields the cluster boundary,

the DBM in the limit of infinitesimal positive. We show  for x=0,...,2r. F(X) is taken to be analytic, and one to
that in this case, the dynamics leads to Sivashinsky's equane for x with positive imaginary part. ThusF(x)=x
tion [5]. The pole dynamics is very similar to the branched+ =" ;F(j)e"*. Throughout, we use the symbglg, . .. to

growth dynamics of Halsey and co-workel8]. We then  refer to Fourier modes, while will be used to refer to real
consider the pole solutions of this equation, and show thagpaceF(j)=0 for j<O.
the solution with the maximal number of poles is linearly The surface does not contain overhangs in our limit,
stable to all perturbations. This is analogous to the stabilityvhich permits us to describe the surface by its helyht)
of the 1/2 finger in DLA[7]. However, we are able to ana- =Im[F(x)]+- - -.
lytically calculate all eigenvalues and eigenvectors of the sta- At given 7, the dynamics of the cluster can be obtained
bility matrix. from the Shraiman-Bensimon equatif8i:

For any positiver, a flat surface is unstable under DBM
growth. However, in the limit)—0*, the fluctuations about
the flat surface become small. We now show how to rescale eX’ el
the fluctuations in the surface to obtain a nontrivial growth 5tF(X,t)=i[ﬁxF(X7t)]J dX'|§x'F(X')|717"W-

equation describing thg— 0" limit. —€ 1)

DIFFERENTIAL EQUATION FOR SURFACE GROWTH Let us write this equation in terms &f(j) and expand

) ) ) ] ] this equation in powers ofy anda,. The linear term is
First we introduce the continuum equation of motion for

the DBM, and then we take the appropriate limit. We rescale
the fluctuations in the height of the surface in this limit. We 3F(j)= nkF(k)— vk?F(j). 2
regularize the equation on a short distance, and argue that
this regularization corresponds to a finite walker size in the
DBM. Finally, we discuss some basic scaling properties ofWe have added an additional regularization to the linearized
the resulting equation and discuss how to include noise in thequation, with coefficieni proportional to the walker size.
dynamics. The final result will be Sivashinsky’s equation, Equation(1) needs some such regularization to remove finite
with noise. time singularities.
Unlike the linear term, the nonlinear terms in Ed) are
nonvanishing in the limity— 0. The first nonlinear term is,
*Electronic address: hastings@cnls.lanl.gov at =0,
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Now consider the stationary states of the pole dynamics

ﬁtF(J)Z—go [k(j=KF(KF(j—k) (7). With x periodic, there are many possible stationary
states. For example, a state with some having real coordi-
—2k(j +k)E(k)F(j +K)1. (3) nates 0 and some having real coordinatesiay be station-

ary. However, such a state will not be stable under small
We drop the constant term in the expansion of @g.which  translations of the pole positions. For stability, all poles must
simply describes an overall upward motion of the surface. have the same real coordinate. In this case, there is only one
For small, F(k) will be of order 5, by scaling, so that possible set of imaginary coordinates that leads to a station-
all higher order nonlinearities will be unimportant in the ary state. Such a state is stable under any perturbation of pole
limit. Combining Egs(2) and(3) and rescaling the field by ~ coordinates, except for the trivial zero mode associated with
7, and also rescaling the time coordinate andhe equation translation.

of motion for the system is For strip boundary conditions there is a maximum number
of poles one can use to form these stable configurations.
aF () =KF(k)—vk?F(j) Consider what Eq(7) implies for such a configuration.

Clearly, Reg,e,) =0 for all a. We also need Imi;e,) =0 for

_Z [k(j—K)F(K)F(j—k) all a. Let us order the poles so that @<b then Im(e,)

k>0 >Im(e,). Consider the equation of motion feg,. We find

— that
—2k(j+K)FKF(+k)]. 4

dren=1—iv—i2v
eZ Im(ey) ( 1 1 )

+ — +— -
1_e2|m(5N) ;a 1—e'€b7'EN eleNfleb_l

We have numerically studied the smajl-behavior of
DBM clusters for smally and verified the scaling « ». To
obtain this scaling, one must take the smgllimit before
the limit of vanishing walker size. In the opposite limit, with

the walker size taken to zero beforeis taken to zero, the (8)
fluctuations in surface height remain large. The crossover
between these limits remains open. The first term on the right-hand side is positive imaginary,

The differential equation for the growth of the height is while all the other terms are negative imaginary. So long as
Im(ey)<Im(e,) for all a# N, then the imaginary part of the
dgth(x,t) =] g, h(x,t) + vazh(x,t) +[d¢h(x,t)]*+ noise, right-hand side is monotonically increasing as &) be-
(5 comes more and more negative. In the limjg— —i, the

equivalent to Sivashinky’s equation. We have added a ranr_|ght-hand side becomes

dom noise field due to shot noise in the number of arriving :

. X i[l1-v—2v(N—-1)]. 9
walkers. The noise will be short-range correlated on a length [1=v=2u )] ©
and time scale set by the short-distance regularization. Thug, tis quantity is negative imaginary, then it is not possible,

the magnitude of the noise will be proportional #pas for 5, any ey, to havedey=0. Then, d, Im(ey) <0 for all
smaller walkers the shot noise is reduced. The mean-squafgne and we find thaé,, moves off to—iz. In the limit that

fluctuations in the noise will be of order’. ey Moves off to infinity, this pole no longer contributes to the
sum in Eq.(6) and can be ignored.
POLE DYNAMICS AT NONVANISHING  » Thus, for anyv in the strip geometry, there are states with

N poles, stable against any small perturbation in the pole
position. For eaclN, there is only one such state, and it has
all poles with the same real coordinate. Such a stable solu-

It has been show9] that Eqg.(4) has pole solutions.
Consider the ansatz

N tion with N poles can be constructed only #1+wv
F(k)=— 2, —e i<k, (6) +2v(N—1)<0. Otherwise, some number of poles move off
a=1 Kk to infinity until the solution reduces to one with 1+ v
+2»(N-1)<0.

The pointse, are poles of),F(x,t) in the complex plane. In

this case, the equation of motion yields
STABILITY ANALYSIS

Orea=i—iv—2i . . . .
t€a v v We now consider the linear stability of the stationary

@2 Im(ep) 1 1 states above. Here, we will consider arbitrary small pertur-
> e )+ E ( ) 1 bations ofh, including perturbations that cannot be written in
1—e” % bra terms of a small change in the pole coordinates. We are able
(77 to analytically calculate the eigenvalues of the linear prob-
lem, and find that, for each value of viscosity, only one of the
so thatF (k) continues to be described by the ang@)zand  stationary states is linearly stable.
the dynamics of Eq(7) causes poles to attract in the real Before doing any mathematical analysis of our problem,
direction while repelling in the imaginary direction. recall the stability analysis of the Saffman-Taylor system

—
l_elébfléa eIEafleb_l
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[10]. Saffman and Taylor found a one-parameter family offor some linear operatoils,M, with an implied sum oveb.
stationary solutions to the zero surface-tension problem. Suifhe result of this is that there aréN2different modegthere
face tension acts as a singular perturbation to this problemareN complex coordinates,). One of these modes is a zero
Eventually it was showii7] that a small amount of surface mode; this is a mode with alf, equal to the same real
tension stabilizes the 1/2 finger against small perturbationsonstant. From the analysis above, if ajlhave the same
However, in the DLA problem, although the system is regu-real coordinate, then the otheN21 modes are all stable
larized due to nonvanishing walker size, a fractal structurg¢have negative eigenvalue

emerges instead of stable fingers. In our system, although the Now, consider the case with nonzeig). For simplicity,
system is stable, in the limit of vanishing walker size anfirst consider a case with initial conditions such thét) is
exponentially smallin 1/v) amount of noise will destabilize nonzero, but all othef(j) are zero. Then, the linearized

it. equation of motion yields
The physical reason for stability is most easily understood _ _
in a WKB approximation. Consider a localized, short- a[F()—Fo(j)]=(1-v1%)5; ,f(1)+2v
wavelength, perturbatio(x) to a stationary staté&q(x). N
Let the stationary state be such that all poles have real coor- —ie(j—1)
, ” X 1-6 pf(l iU
dinate 0. Then the surface has a deep depressionxredyr Zl [ Vibe

and a very broad finger located arouxed 7. The perturba- o
tion will move in position, due to the term in the equation of —f(1)etalry]. (12
motion d,f(x)dFo(X), until the perturbation moves t& ) ) .
—0, where it disappears into the deep depression on th&he reason for the factor of 14; ;) in the sum is that in
surface. A similar physical mechanism for stability is known EQ- (6) each pole contributes only (k) for k>0. It is
in the Hele-Shaw and other problerfisl]. The closer the ~Convenient now to rewrite Ed12) as
perturbation is to the tip of the finger initially, the longer it . o 2
will take it to drift along the side of the finger and disappear. HLF(1)=Fo(D)]=(1=v1"=2uN)§j,1(1)
Fortunately, the nonvanishing viscosity prevents us from lo- N
calizing a perturbation exactly at the tip as the perturbation +2v2 [f(1)e 'al—D
must have a width of order or greater if it is to be unstable, =1
so eventually all short-wavelength perturbations will be de-
stroyed.

Now, let us proceed to the exact analysis. Egtx) be a
stationary state, and consider a small perturbatiot). We

Wiei(j+l)]' (13)

which, combined with Eq(11), is equivalent to the equations

will consider the evolution of the system in time, to linear 3f(1)=(1—v12—2uN)f(1), (14)
order inf. One possibility to do this is, of course, to take the

equation of motior(4), writing F(x)=Fq(x) + f(x), and di- dfa=—2i[f(1)e'a—f(1)e "]+ L, yfp+Mapfp.
rectly derive the equation of motion to linear orderfjrob- ’ " (15
taining ¢,f(x,t)=Lf, whereL is some linear operator whose

eigenvalues describe the stability of the stAte However, If we extend this procedure to the case of genéfg), we

this procedure would be very awkward, and we will use afind
different technique.

Let Fo(x) be a state formed usiny poles, at positions af())=(—vj*>=2jvN)f(j)
€1,€, ...,y We will write a stateF(j), near toFq(j), as N
+2vY, > (K Dea—gtik-ieayf(k), (16)
R (1) - e
F(i)=Foli)+—=—+i 2, vie ' (10

a=1 . _—
afa= =212 [f(j)ele—f(je %]
i

wheref(j) is a function ofj and the varioug, are numbers _
representing small deviations of the pole coordinates from +LabfotMapfy. (17
their original positions. By doing this, we have introduced ) i . .
some redundancy in describing the possible perturbations to The above two equations fully define the linear evolution
Fo. of the system. Note that the matrix describing the linear evo-

If £(j)=0, then we can derive a linear equation of motion!ution of the system igriangular: We find thata,f(j) de-

must place theN poles at positionsg;+fq,e,+ 1o, ...,ey  '€Cty read off the eigenvalues of the matrix. There ake 2
+f, and linearize Eq(7) aboutf,=0. We will obtain some ~€igenvalues which are just the eigenvalues from the evolu-
equation of the form tion of Eq. (11). Then there are eigenvalues which g(&
—2vN)—vj2with j=1,2,3 ... .Each of these eigenvalues
_ must in fact be counted twice, since there is one such eigen-
dfa=LapfotMapfp (1) value withf(j) purely real, and one such with(j) purely
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imaginary. So long as we consider the stationary state found
above, withN poles, all with the same imaginary coordinate
and with N the largest integer less than{%)/2v, then all 0
eigenvalues of the linear evolution are negative, with @re
three exceptions. The first exception is the zero mode cor-
responding to changing the imaginary coordinate of all the
poles by the same amount. The other two possible exceptions
occur if (1+v)/2v is an integer, in which case-12vN
—v12=0, and so we have two more zero modes. However,
in any case, there are no positive eigenvalues.
This result confirms the numerical result for the eigenval-
ues[12]. In that work, an approximate argument was given

/ i é X
which led to the same series of eigenvalues based on con-

structing linear perturbations of the system by adding poles. g1 1. competition between two fingers, short times. Poles
We have been able to demonstrate these eigenvalues exagie real coordinates 0.1 amg-0.1.

by reducing the matrix to triangular form, which also enables

a full calcullguion of 'aII eigenvegtors. For an eigenvalie In the limit of vanishing viscosity, the poles form a fluid,
—2vN)—vj”, the eigenvector i(j)=1, f(j=1)=[+/(1 0 gensity of which in the fingering solution can be calcu-
—wN=»))]Sl_,(ea~e*'%), ... . Further, we have |ated. In this case, the eigenvalues of the stability matrix
shown that the off-diagonal elements of the stability matrixextend down to zero. One finds tH&i h(x) has a logarith-
are exponentially large. This is connected to the fact that, ifnjc divergence in its derivative as—0. This contrasts with
the WKB analysis, perturbations will grow exponentially be- the case aty=1, for which the stable finger occupies only
fore they reachx=0. This indicates that, despite the linear na)f the channel. We expect that for smattG<1 the width
stability, an exponentially small perturbation can lead to nonyf the finger compared to the channel width is intermediate

linear instability. between 1/2 and 1.
The above analysis might be slightly confusing, as it

seems we have introduced more eigenvectors than we started

with by adding thef, coordinates. We now show how to COMPARISON TO BRANCHED GROWTH MODEL
correctly count eigenvectors to resolve this. If we look at the
linearized equation of motion in its original form, without
introducing the additional coordinatég, we notice that the

Let us consider the relation between the pole dynamics
and the branched growth model dynamié$ The dynamics
are similar, with one complication that highlights the prob-

. . . . . .. . 2
diagonal tgrmlln the linear equamon of motionjis »j~. For lems in representing an evolving surface with a finite sum of
very largej, this term must dominate all other terms, and So'poles

if we order the eigenvalu_es of the Iine_ariz_ed equation of mo- Consider first a situation with a collection bf poles lo-
tion, anq Iookzat th'e H.h eigenvalue, this eigenvalue must be cated atx=0, such thal is close to the maximal number of
clos_e toj —»j°. This gives us or.1e way to count the_ number oles, describing a single finger. Add to this some number of
of eigenvalues of the problem: since the dimension of th oles atx=+ 8, with 8 small. This describes a split in the

space off(}) is infinite, we cannot simply count the number_tip, leading to two branches. The solution is unstable, and

of eigenvalues directly, bUt we can count the r.‘“mber of €one finds thats grows exponentially in time, with a time
genvalues less than a given number. Now, notice that

constant that is independent of Thus, one of the two
_ > 5 5 branches will win, and the other branch will disappear. As a
J(1=2vN)—»j*=k—vk*=N+N°v (18 simple example, we show a situation with only two poles,

with
k=j+N. (19) /_\"\{\ Y,
The quantity— N+ N?v will be of orderN, but for very large 3 -2 -1 ! 2 3
k it will be small compared tk— vk?. So, while we have -0.2
introduced A eigenvalues by adding tHg coordinates, Eq.
(19) makes it clear that we have made up for this by losing -0.4
2N eigenvalues elsewhere: the full set of eigenvalues in-
cludes the X eigenvalues from Eq11) as well as eigenval- -0.6
uesj—rj?°—N+N?p with j=N+1N+2N+3,... .Then,
if we look at the 3th eigenvalue, it will be close tp— vj?. -0.8

Thus, we have found all eigenvalues of the linear evolution.
This counting of eigenvalues is reminiscent of the problem FIG. 2. Competition between two fingers, long time limit where
of anomalies in field theory. one finger is completely suppressed.
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one located ak=0.1 and the other at=7—0.1. The two CONCLUSION
branches are initially almost symmetric, as shown in Fig. 1.
Then, at long times, in Fig. 2, we show the final configura-
tion with only one branch. The poles describe the point
separating two branches.

While the dynamics is thus qualitatively similar to that of
Halsey, there is a complication. Consider now a situatio
with the maximal number of poles, but let the poles all be a

differentx, such that the poles are separated by distances imension may be only slightly reduced from 2, the surface

order v. This describes a situation with a large number of”. o .
branches. As the real positions of the poles merge Somg;mensmn jumps and becomes equal to the cluster dimen-
' on. Thus, the transition for small may be highly singular

branches die while others become larger. This process 13]
physically exactly what is expected in branched growth dy :
namics; however, in the pole dynamics, we lack exact solu-
tions of the pole equations of motion for such a case. Thus,
we are so far unable to describe the formation of larger This work was supported by DOE Grant No. W-7405-
branches using the poles. This is a problem for future workENG-36.

In conclusion, we have considered the problem of the
dielectric breakdown model in the limit of vanishing This
Jeads to a pole dynamics, which enabled us to find the exact
eigenvalues of the linear stability matrix. Going from
=0" to nonvanishingy is likely to be a very nontrivial step.
or p=0" DBM clusters are two-dimensional, with a one-
imensional surface. For nonvanishimg while the cluster
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