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Dielectric breakdown model at smallh: Pole dynamics
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We consider the dielectric breakdown model in the limith→01. This is shown to lead to Sivashinsky’s
equation. We show that a particular configuration of poles is linearly stable, in analogy to the stability of the
1/2 finger for diffusion limited aggregation, and compute exactly the eigenvalues of the stability matrix.
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The problem of Laplacian growth in two dimensions h
been much studied since the introduction of the mode
diffusion limited aggregation~DLA ! @1#. The model is
known to give rise to complex, branching structures, with
nontrivial fractal dimension. A generalization of DLA is th
dielectric breakdown model~DBM! @3#, which includes an
additional free parameterh, and has a continuously varyin
fractal dimension. Recently, a renormalzation group
proach has been developed based on expanding abouth54,
where it is argued that the clusters become asymptotic
one dimensional@2#.

An alternative possibility, which will be explored in thi
paper, is to expand nearh50. For smallh, the cluster be-
comes less branched, with a dimensionality approaching
the limit h→0, where the dynamics reduces to an Ed
model @4#. The idea behind the present work is to exam
the DBM in the limit of infinitesimal positiveh. We show
that in this case, the dynamics leads to Sivashinsky’s eq
tion @5#. The pole dynamics is very similar to the branch
growth dynamics of Halsey and co-workers@6#. We then
consider the pole solutions of this equation, and show
the solution with the maximal number of poles is linea
stable to all perturbations. This is analogous to the stab
of the 1/2 finger in DLA@7#. However, we are able to ana
lytically calculate all eigenvalues and eigenvectors of the
bility matrix.

For any positiveh, a flat surface is unstable under DBM
growth. However, in the limith→01, the fluctuations abou
the flat surface become small. We now show how to resc
the fluctuations in the surface to obtain a nontrivial grow
equation describing theh→01 limit.

DIFFERENTIAL EQUATION FOR SURFACE GROWTH

First we introduce the continuum equation of motion f
the DBM, and then we take the appropriate limit. We resc
the fluctuations in the height of the surface in this limit. W
regularize the equation on a short distance, and argue
this regularization corresponds to a finite walker size in
DBM. Finally, we discuss some basic scaling properties
the resulting equation and discuss how to include noise in
dynamics. The final result will be Sivashinsky’s equatio
with noise.
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We consider growth in a strip geometry throughout. He
the growth is confined to a strip, which is periodic in th
horizontal direction, with the growth happening vertical
We will use complex variables to describe the coordinate
the two-dimensional strip in which growth occurs. The re
part of the complex variable will represent the horizon
position, while the imaginary part represents the vertical
sition. Growth will occur in the positive imaginary direction
For the strip boundary conditions, we will use a coordinatex,
periodic with period 2p, to parametrize the cluster. The in
tial, seed cluster is taken to be a flat surface, and rand
walkers are released from infinity, above the strip. In the s
geometry, one finds fractal DBM clusters when the ratio
the width of the strip to the walker size diverges.

We will parametrize the boundary of the cluster by usi
a functionF(x), such thatF(x) yields the cluster boundary
for x50, . . . ,2p. F(x) is taken to be analytic, and one t
one for x with positive imaginary part. Thus,F(x)5x
1( j 50

` F( j )ei jx . Throughout, we use the symbolsj ,k, . . . to
refer to Fourier modes, whilex will be used to refer to rea
space.F( j )50 for j ,0.

The surface does not contain overhangs in our lim
which permits us to describe the surface by its heighth(x)
5Im@F(x)#1•••.

At given h, the dynamics of the cluster can be obtain
from the Shraiman-Bensimon equation@8#:

] tF~x,t !5 i @]xF~x,t !#E dx8u]x8F~x8!u212h
eix81eix

eix82eix
.

~1!

Let us write this equation in terms ofF( j ) and expand
this equation in powers ofh andak . The linear term is

] tF~ j !5hkF~k!2nk2F~ j !. ~2!

We have added an additional regularization to the lineari
equation, with coefficientn proportional to the walker size
Equation~1! needs some such regularization to remove fin
time singularities.

Unlike the linear term, the nonlinear terms in Eq.~1! are
nonvanishing in the limith→0. The first nonlinear term is
at h50,
©2002 The American Physical Society21-1
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] tF~ j !52 (
k.0

@k~ j 2k!F~k!F~ j 2k!

22k~ j 1k!F̄~k!F~ j 1k!#. ~3!

We drop the constant term in the expansion of Eq.~1!, which
simply describes an overall upward motion of the surface

For smallh, F(k) will be of orderh, by scaling, so that
all higher order nonlinearities will be unimportant in th
limit. Combining Eqs.~2! and~3! and rescaling the fieldF by
h, and also rescaling the time coordinate andn, the equation
of motion for the system is

] tF~ j !5kF~k!2nk2F~ j !

2 (
k.0

@k~ j 2k!F~k!F~ j 2k!

22k~ j 1k!F̄~k!F~ j 1k!#. ~4!

We have numerically studied the small-h behavior of
DBM clusters for smallh and verified the scalingF}h. To
obtain this scaling, one must take the small-h limit before
the limit of vanishing walker size. In the opposite limit, wit
the walker size taken to zero beforeh is taken to zero, the
fluctuations in surface height remain large. The crosso
between these limits remains open.

The differential equation for the growth of the height is

] th~x,t !5u]xuh~x,t !1n]x
2h~x,t !1@]xh~x,t !#21noise,

~5!

equivalent to Sivashinky’s equation. We have added a r
dom noise field due to shot noise in the number of arriv
walkers. The noise will be short-range correlated on a len
and time scale set by the short-distance regularization. T
the magnitude of the noise will be proportional ton, as for
smaller walkers the shot noise is reduced. The mean-sq
fluctuations in the noise will be of ordern2.

POLE DYNAMICS AT NONVANISHING n

It has been shown@9# that Eq. ~4! has pole solutions
Consider the ansatz

F~k!52 (
a51

N
n

k
e2 i eak. ~6!

The pointsea are poles of]xF(x,t) in the complex plane. In
this case, the equation of motion yields

] tea5 i 2 in22in

3F e2 Im(ea)

12e2 Im(ea)
1 (

bÞa
S 1

12ei eb2 i ea
1

1

ei ea2 i ēb21
D G ,

~7!

so thatF(k) continues to be described by the ansatz~6!, and
the dynamics of Eq.~7! causes poles to attract in the re
direction while repelling in the imaginary direction.
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Now consider the stationary states of the pole dynam
~7!. With x periodic, there are many possible stationa
states. For example, a state with some having real coo
nates 0 and some having real coordinatesp may be station-
ary. However, such a state will not be stable under sm
translations of the pole positions. For stability, all poles m
have the same real coordinate. In this case, there is only
possible set of imaginary coordinates that leads to a stat
ary state. Such a state is stable under any perturbation of
coordinates, except for the trivial zero mode associated w
translation.

For strip boundary conditions there is a maximum num
of poles one can use to form these stable configuratio
Consider what Eq.~7! implies for such a configuration
Clearly, Re(] tea)50 for all a. We also need Im(] tea)50 for
all a. Let us order the poles so that ifa,b then Im(ea)
.Im(eb). Consider the equation of motion foreN . We find
that

] teN5 i 2 in2 i2n

3F e2 Im(eN)

12e2 Im(eN)
1 (

bÞa
S 1

12ei eb2 i eN
1

1

ei eN2 i ēb21
D G .

~8!

The first term on the right-hand side is positive imagina
while all the other terms are negative imaginary. So long
Im(eN),Im(ea) for all aÞN, then the imaginary part of the
right-hand side is monotonically increasing as Im(eN) be-
comes more and more negative. In the limiteN→2 i`, the
right-hand side becomes

i @12n22n~N21!#. ~9!

If this quantity is negative imaginary, then it is not possib
for any eN , to have] teN50. Then, ] t Im(eN),0 for all
time, and we find thateN moves off to2 i`. In the limit that
eN moves off to infinity, this pole no longer contributes to th
sum in Eq.~6! and can be ignored.

Thus, for anyn in the strip geometry, there are states w
N poles, stable against any small perturbation in the p
position. For eachN, there is only one such state, and it h
all poles with the same real coordinate. Such a stable s
tion with N poles can be constructed only if211n
12n(N21),0. Otherwise, some number of poles move o
to infinity until the solution reduces to one with211n
12n(N21),0.

STABILITY ANALYSIS

We now consider the linear stability of the stationa
states above. Here, we will consider arbitrary small pert
bations ofh, including perturbations that cannot be written
terms of a small change in the pole coordinates. We are
to analytically calculate the eigenvalues of the linear pro
lem, and find that, for each value of viscosity, only one of t
stationary states is linearly stable.

Before doing any mathematical analysis of our proble
recall the stability analysis of the Saffman-Taylor syste
1-2
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DIELECTRIC BREAKDOWN MODEL AT SMALL h: POLE DYNAMICS PHYSICAL REVIEW E 65 066121
@10#. Saffman and Taylor found a one-parameter family
stationary solutions to the zero surface-tension problem.
face tension acts as a singular perturbation to this probl
Eventually it was shown@7# that a small amount of surfac
tension stabilizes the 1/2 finger against small perturbatio
However, in the DLA problem, although the system is reg
larized due to nonvanishing walker size, a fractal struct
emerges instead of stable fingers. In our system, although
system is stable, in the limit of vanishing walker size
exponentially small~in 1/n) amount of noise will destabilize
it.

The physical reason for stability is most easily understo
in a WKB approximation. Consider a localized, sho
wavelength, perturbationf (x) to a stationary stateF0(x).
Let the stationary state be such that all poles have real c
dinate 0. Then the surface has a deep depression nearx50,
and a very broad finger located aroundx5p. The perturba-
tion will move in position, due to the term in the equation
motion ]xf (x)]xF0(x), until the perturbation moves tox
50, where it disappears into the deep depression on
surface. A similar physical mechanism for stability is know
in the Hele-Shaw and other problems@11#. The closer the
perturbation is to the tip of the finger initially, the longer
will take it to drift along the side of the finger and disappe
Fortunately, the nonvanishing viscosity prevents us from
calizing a perturbation exactly at the tip as the perturbat
must have a width of ordern or greater if it is to be unstable
so eventually all short-wavelength perturbations will be d
stroyed.

Now, let us proceed to the exact analysis. LetF0(x) be a
stationary state, and consider a small perturbationf (x). We
will consider the evolution of the system in time, to line
order inf. One possibility to do this is, of course, to take t
equation of motion~4!, writing F(x)5F0(x)1 f (x), and di-
rectly derive the equation of motion to linear order inf, ob-
taining] t f (x,t)5L f , whereL is some linear operator whos
eigenvalues describe the stability of the stateF0. However,
this procedure would be very awkward, and we will use
different technique.

Let F0(x) be a state formed usingN poles, at positions
e1 ,e2 , . . . ,eN . We will write a stateF( j ), near toF0( j ), as

F~ j !5F0~ j !1
f ~ j !

j
1 i (

a51

N

n f ae2 i eaj ~10!

where f ( j ) is a function ofj and the variousf a are numbers
representing small deviations of the pole coordinates fr
their original positions. By doing this, we have introduc
some redundancy in describing the possible perturbation
F0.

If f ( j )50, then we can derive a linear equation of moti
for the f a , simply using the pole dynamics equation. W
must place theN poles at positionse11 f 1 ,e21 f 2 , . . . ,eN
1 f N and linearize Eq.~7! aboutf a50. We will obtain some
equation of the form

] t f a5La,bf b1Ma,bf̄ b ~11!
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for some linear operatorsL,M , with an implied sum overb.
The result of this is that there are 2N different modes~there
areN complex coordinatesf a). One of these modes is a zer
mode; this is a mode with allf a equal to the same rea
constant. From the analysis above, if alle i have the same
real coordinate, then the other 2N21 modes are all stable
~have negative eigenvalue!.

Now, consider the case with nonzerof ( j ). For simplicity,
first consider a case with initial conditions such thatf (1) is
nonzero, but all otherf ( j ) are zero. Then, the linearize
equation of motion yields

] t@F~ j !2F0~ j !#5~12n12!d j ,1f ~1!12n

3(
i 51

N

@12d j ,1! f ~1!e2 i e i ( j 21)

2 f ~1!̄e2 i e i ( j 11)]. ~12!

The reason for the factor of (12d j ,1) in the sum is that in
Eq. ~6! each pole contributes only toF(k) for k.0. It is
convenient now to rewrite Eq.~12! as

] t@F~ j !2F0~ j !#5~12n1222nN!d j ,1f ~1!

12n(
i 51

N

@ f ~1!e2 i e i ( j 21)

2 f ~1!̄e2 i e i ( j 11)#, ~13!

which, combined with Eq.~11!, is equivalent to the equation

] t f ~1!5~12n1222nN! f ~1!, ~14!

] t f a522i @ f ~1!ei ea2 f ~1!̄e2 i ea#1La,bf b1Ma,bf̄ b .
~15!

If we extend this procedure to the case of generalf ( j ), we
find

] t f ~ j !5~ j 2n j 222 j nN! f ~ j !

12n(
k. j

(
a51

N

~ei (k2 j ) ēa2e1 i (k2 j )ea! f ~k!, ~16!

] t f a522i(
j

@ f ~ j !ei j ea2 f ~ j !̄e2 i j ea#

1La,bf b1Ma,bf̄ b . ~17!

The above two equations fully define the linear evoluti
of the system. Note that the matrix describing the linear e
lution of the system istriangular: We find that] t f ( j ) de-
pends only onf (k) for k> j . This makes it possible to di
rectly read off the eigenvalues of the matrix. There areN
eigenvalues which are just the eigenvalues from the ev
tion of Eq. ~11!. Then there are eigenvalues which arej (1
22nN)2n j 2 with j 51,2,3, . . . . Each of these eigenvalue
must in fact be counted twice, since there is one such eig
value with f ( j ) purely real, and one such withf ( j ) purely
1-3
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M. B. HASTINGS PHYSICAL REVIEW E 65 066121
imaginary. So long as we consider the stationary state fo
above, withN poles, all with the same imaginary coordina
and withN the largest integer less than (11n)/2n, then all
eigenvalues of the linear evolution are negative, with one~or
three! exceptions. The first exception is the zero mode c
responding to changing the imaginary coordinate of all
poles by the same amount. The other two possible except
occur if (11n)/2n is an integer, in which case 122nN
2n1250, and so we have two more zero modes. Howev
in any case, there are no positive eigenvalues.

This result confirms the numerical result for the eigenv
ues@12#. In that work, an approximate argument was giv
which led to the same series of eigenvalues based on
structing linear perturbations of the system by adding po
We have been able to demonstrate these eigenvalues ex
by reducing the matrix to triangular form, which also enab
a full calculation of all eigenvectors. For an eigenvaluej (1
22nN)2n j 2, the eigenvector isf ( j )51, f ( j 21)5@n/(1
2nN2n j )#(a51

N (ei ēa2e1 i ea), . . . . Further, we have
shown that the off-diagonal elements of the stability mat
are exponentially large. This is connected to the fact that
the WKB analysis, perturbations will grow exponentially b
fore they reachx50. This indicates that, despite the line
stability, an exponentially small perturbation can lead to n
linear instability.

The above analysis might be slightly confusing, as
seems we have introduced more eigenvectors than we st
with by adding thef a coordinates. We now show how t
correctly count eigenvectors to resolve this. If we look at
linearized equation of motion in its original form, withou
introducing the additional coordinatesf a , we notice that the
diagonal term in the linear equation of motion isj 2n j 2. For
very largej, this term must dominate all other terms, and
if we order the eigenvalues of the linearized equation of m
tion, and look at the 2j th eigenvalue, this eigenvalue must b
close toj 2n j 2. This gives us one way to count the numb
of eigenvalues of the problem: since the dimension of
space off ( j ) is infinite, we cannot simply count the numb
of eigenvalues directly, but we can count the number of
genvalues less than a given number. Now, notice that

j ~122nN!2n j 25k2nk22N1N2n ~18!

with

k5 j 1N. ~19!

The quantity2N1N2n will be of orderN, but for very large
k it will be small compared tok2nk2. So, while we have
introduced 2N eigenvalues by adding thef a coordinates, Eq.
~19! makes it clear that we have made up for this by los
2N eigenvalues elsewhere: the full set of eigenvalues
cludes the 2N eigenvalues from Eq.~11! as well as eigenval-
ues j 2n j 22N1N2n with j 5N11,N12,N13, . . . .Then,
if we look at the 2j th eigenvalue, it will be close toj 2n j 2.
Thus, we have found all eigenvalues of the linear evoluti
This counting of eigenvalues is reminiscent of the probl
of anomalies in field theory.
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In the limit of vanishing viscosity, the poles form a fluid
the density of which in the fingering solution can be calc
lated. In this case, the eigenvalues of the stability ma
extend down to zero. One finds that@9# h(x) has a logarith-
mic divergence in its derivative asx→0. This contrasts with
the case ath51, for which the stable finger occupies on
half the channel. We expect that for small 0,h,1 the width
of the finger compared to the channel width is intermedi
between 1/2 and 1.

COMPARISON TO BRANCHED GROWTH MODEL

Let us consider the relation between the pole dynam
and the branched growth model dynamics@6#. The dynamics
are similar, with one complication that highlights the pro
lems in representing an evolving surface with a finite sum
poles.

Consider first a situation with a collection ofN poles lo-
cated atx50, such thatN is close to the maximal number o
poles, describing a single finger. Add to this some numbe
poles atx5p1d, with d small. This describes a split in th
tip, leading to two branches. The solution is unstable, a
one finds thatd grows exponentially in time, with a time
constant that is independent ofn. Thus, one of the two
branches will win, and the other branch will disappear. A
simple example, we show a situation with only two pole

FIG. 1. Competition between two fingers, short times. Po
have real coordinates 0.1 andp20.1.

FIG. 2. Competition between two fingers, long time limit whe
one finger is completely suppressed.
1-4
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one located atx50.1 and the other atx5p20.1. The two
branches are initially almost symmetric, as shown in Fig
Then, at long times, in Fig. 2, we show the final configu
tion with only one branch. The poles describe the poi
separating two branches.

While the dynamics is thus qualitatively similar to that
Halsey, there is a complication. Consider now a situat
with the maximal number of poles, but let the poles all be
different x, such that the poles are separated by distance
order n. This describes a situation with a large number
branches. As the real positions of the poles merge, s
branches die while others become larger. This proces
physically exactly what is expected in branched growth
namics; however, in the pole dynamics, we lack exact so
tions of the pole equations of motion for such a case. Th
we are so far unable to describe the formation of lar
branches using the poles. This is a problem for future wo
e
J.

o

06612
.
-
s

n
t
of
f
e
is
-
-

s,
r
.

CONCLUSION

In conclusion, we have considered the problem of
dielectric breakdown model in the limit of vanishingh. This
leads to a pole dynamics, which enabled us to find the ex
eigenvalues of the linear stability matrix. Going fromh
501 to nonvanishingh is likely to be a very nontrivial step
For h501 DBM clusters are two-dimensional, with a one
dimensional surface. For nonvanishingh, while the cluster
dimension may be only slightly reduced from 2, the surfa
dimension jumps and becomes equal to the cluster dim
sion. Thus, the transition for smallh may be highly singular
@13#.
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